The road from radiance to flux: angular distribution model

- Sort observed radiances into angular bins over different scene types;
- Integrate radiance over all θ and φ to estimate the anisotropic factor for each scene type;
- Apply anisotropic factor to observed radiance to derive TOA flux;

$$R(\theta_0, \theta, \phi) = \frac{\pi \hat{I}(\theta_0, \theta, \phi)}{\int_0^{2\pi} \int_0^{\frac{\pi}{2}} \hat{I}(\theta_0, \theta, \phi) cos\theta sin\theta d\theta d\phi} = \frac{\pi \hat{I}(\theta_0, \theta, \phi)}{\hat{F}(\theta_0)}$$

$$F(\theta_0) = \frac{\pi I_o(\theta_0, \theta, \phi)}{R(\theta_0, \theta, \phi)}$$

Predicted radiance vs. observed radiance

$$R(\theta_0, \theta, \phi) = \frac{\pi \hat{I}(\theta_0, \theta, \phi)}{\hat{F}(\theta_0)} \qquad F(\theta_0) = \frac{\pi I_o(\theta_0, \theta, \phi)}{R(\theta_0, \theta, \phi)}$$

$$F(\theta_0) = \frac{I_o(\theta_0, \theta, \phi)}{\hat{I}(\theta_0, \theta, \phi)} \hat{F}(\theta_0)$$

 Predicted radiances can be used to verify the accuracy of ADM;

Normalize predicted and observed radiance

Observed radiance:

$$I_j^o, \quad j=1,\cdot\cdot\cdot,n$$

Predicted radiance:

$$\hat{I}_j, \quad j=1,\cdots,n$$

 $RMS = \sqrt{\frac{1}{n} \sum_{j=1}^{n} \left(\frac{\hat{I}_{j}}{\frac{\hat{I}_{j}}{\hat{I}}} - \frac{I_{j}^{o}}{\frac{1}{I^{o}}}\right)}$

 $\overline{I^o} = \frac{1}{n} \sum_{j=1}^n I_j^o \qquad \overline{\hat{I}} = \frac{1}{n} \sum_{j=1}^n \hat{I}_j$

1°

- RMS error between normalized predicted radiance and normalized observed radiance is closely related to the ADM error
- RMS error of 10% (20%) corresponds to flux RMS error of about 2~12 (4~15) Wm⁻² over different scene types based upon theoretical simulations

SW angular distribution model over clear land: Modified RossLi

- Collect clear-sky reflectance over 1°×1° regions for every calendar month;
- Stratify reflectance within each $1^{\circ}\times1^{\circ}$ region by NDVI (0.1) and $\cos\theta_0$ (0.2);
- Apply modified RossLi fit to produce BRDF and ADM for each NDVI and $\cos\theta_0$ intervals within each 1°×1° region.

$$\rho(\mu_0,\mu,\phi) = k_0 + k_1 \cdot B_1(\mu_0,\mu,\phi) + k_2 \cdot B_2(\mu_0,\mu,\phi)$$
 from Maignan et al., 2004

ADM for different NDVI bins

New BRDF model reduces the RMS error

Apply prototype Ed4 ADM to Ed2 SSF

Clr Land RMS error for Ed2 SSF 200105: mean RMS=7.4%

New BRDF model reduces the RMS error

Apply Ed2 ADM to Ed2 SSF

Clr Lnd RMS error for Ed2 SSF (Ed2 ADM) 200105: mean RMS=8.1%

Better scene identification further reduces the RMS error

Apply prototype Ed4 ADM to Ed4 SSF

CERES STM

Clear-sky angular distribution model over ocean

- Clear-sky ADM over ocean R(w, θ_0 , θ , ϕ);
- Aerosol optical depth was not explicitly considered, ADM dependence on aerosol optical depth is implicitly accounted for by theoretical adjustment.

ADMs over clear ocean accounts for AOD

- Develop a two-band (0.64 and 0.86 µm) AOD retrieval based up maritime aerosols;
- Stratify AOD into three percentile bins;
- Build ADM for these three AOD bins separately.

AOD dependent ADMs increase the instantaneous TOA flux around coastal regions

CERES STM

ADMs over clear ocean accounts for aerosol loading and type

- AOD retrieval based upon the fraction of fine-mode (1st MODIS aerosol model) and coarse-mode aerosol (9th MODIS model);
- Stratify fine-mode dominated AOD into 3 bins and coarse-mode dominated AOD into 3 bins;
- Build ADM for each AOD bin and type separately (6 ADMs).

Angular distribution model over cloudy ocean

- For glint angle > 20°, or glint angle < 20° and ln(fT) > 6:
 - Average instantaneous radiances into 750 intervals of ln(ft), separately for liquid, mixed, and ice clouds;
 - Apply a five-parameter sigmoidal fit to mean radiance and ln(ft);

$$I = I_0 + \frac{a}{[1 + e^{-(x - x_0)/b}]^c}$$

- For glint angle < 20° and ln(ft) < 6:
 - Calculate mean radiance for 6 wind speed bins and 4 In(ft) bins;
 - Use mean radiance to build ADM

A case of sigmoidal fit over ocean: all Ed2 RAP data

Do we need to consider other variables to define the ADM?

- Current ADM considers cloud optical depth, cloud fraction, and cloud phase;
- Are there any other variables that we need to consider?
 - Cloud top pressure
 - Cloud droplet size
 - Standard deviation of cloud optical depth
 - Precipitable water

Sigmoidal fit is not sensitive to other variables

Ed4 SSF produces tighter sigmoidal fit over ocean

Angular distribution model over cloudy land/desert

Derive cloudy area contribution from observed radiance:

$$fI^{cld}(\mu_0, \mu, \phi) = I(\mu_0, \mu, \phi) - (1 - f) \frac{\mu_0 E_0}{\pi} \rho^{clr}(\mu_0, \mu, \phi) - f \frac{\mu_0 E_0}{\pi} \left[\rho^{clr}(\mu_0, \mu, \phi) e^{\frac{-\tau}{\mu_0}} e^{\frac{-\tau}{\mu}} + \overline{\alpha}^{clr} \frac{t^{cld}(\tau, \mu_0) t^{cld}(\tau, \mu)}{1 - \overline{\alpha}^{clr} \overline{\alpha}^{cld}(\tau)} \right]$$

- Average instantaneous fI^{cld} into 375 intervals of ln(ft) for each angular bin (5°) for three cloud phases;
- Apply a five-parameter sigmoidal fit to mean fI^{cld} and ln(ft);

$$I = I_0 + \frac{a}{[1 + e^{-(x - x_0)/b}]^c}$$

Ed4 SSF produces tighter sigmoidal fit over land

SW angular distribution models over snow: clear-sky

Fresh snow:

– Apply the RossLi fit to produce BRDF and ADM for each NDVI and $\cos\theta_0$ intervals within each 1°×1° region for every seasonal month.

Permanent snow:

- For Antarctica, use MISR observations to correct the effect of sastrugi. The new ADMs reduce the albedo dependence on solar azimuth angle.
- For Greenland, will evaluate after more Ed4 data becomes available

ADMs over overcast permanent snow

- Ed2: 4 ADMs based upon surface brightness and COD (≤10 and >10);
- Ed4: 4 ADMs based upon geo-location and cloud phase (<1.85 and ≥1.85);

21

Fluxes from new ADMs show less view angle dependence over overcast permanent snow: Antarctica case

Fluxes from new ADMs show less view angle dependence over overcast permanent snow: Greenland case

Effect of Ed4 cloud property change

LW angular distribution models over different scenes

Over clear land/ocean/snow/ice:

 Add surface skin temperature (Ts) bins and interpolation between the Ts bins:

Over cloudy land/ocean:

- Replace the third-order polynomial fits between radiance and 'pseudoradiance' with interpolation;
- Will evaluate if more bins are needed;

Over cloudy snow/ice:

- Add more Ts bins and interpolation between the Ts bins, also add one more surface-cloud temperature difference (Δ Tsc) bins;
- Will evaluate if we can adopt the 'pseudoradiance' method over snow/ice scenes.

Large changes in Terra polar night cloud mask (Ed4-Ed2)

Ed4 LW ADMs over nighttime permanent snow reduces the RMS error

- Use one year of Ed4
 SSF data to develop
 the preliminary Ed4
 ADM
- Use same one year of Ed2 SSF data to develop the Ed2 ADM
- Both use the updated the Ts and \(\Delta \text{Tsc bins} \)

Status

- We have worked through most scene types and have seen some improvement in the proposed Ed4 ADMs
- Initial evaluation indicates that improved cloud algorithm in Ed4 SSF will also improve Ed4 ADMs
- We will assess the possibility of combined Terra/Aqua ADMs
- Deliver Edition 4 ADM in Oct. 2013